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CREATING BENCHMARK GRAPH DATA

BACKGROUND

1. Technical Field

The present invention generally relates to resource descrip-
tion framework data and, more particularly, to creating
benchmark graph data.

2. Description of the Related Art

The RDF (Resource Description Framework) is quickly
becoming the de-facto standard for the representation and
exchange of information. This is nowhere more evident than
in the recent Linked Open Data (LOD) initiative where data
from varying domains like geographic locations, people,
companies, books, films, scientific data (genes, proteins,
drugs), statistical data, and the like, are interlinked to provide
one large data cloud. As of October 2010, this cloud consists
of around 200 data sources contributing a total of 25 billion
RDF triples. The acceptance of RDF is not limited, however,
to open data that are available on the web. Governments are
also adopting RDF. Many large companies and organizations
are using RDF as the business data representation format,
either for semantic data integration, search engine optimiza-
tion and better product search, or for representation of data
from information extraction. Indeed, with search engines
such as GOOGLE and YAHOO promoting the use of RDF for
search engine optimization, there is clearly incentive for its
growth on the web.

One of the main reasons for the widespread acceptance of
RDF is its inherent flexibility: A diverse set of data, ranging
from structured data (e.g., DBLP) to unstructured data (e.g.,
WIKIPEDIA/DBpedia, where WIKIPEDIA is an example of
an online encyclopedia and DBpedia is a project for extract-
ing structured data from information created as part of WIKE-
PEDIA), can all be represented in RDF. Traditionally, the
structuredness of a dataset, which is defined herein to refer to
an amount of structure, if any, is one of the key considerations
while deciding an appropriate data representation format
(e.g., relational for structured and XML for semi-structured
data). The choice, in turn, largely determines how we orga-
nize data (e.g., dependency theory and normal forms for the
relational model, and XML). It is of central importance when
deciding how to index it (e.g., B+-tree indexes for relational
and numbering scheme-based indexes for XML). Structured-
ness also influences how we query the data (e.g., using SQL
for relational data and XPath/XQuery for XML). In other
words, data structuredness permeates every aspect of data
management and accordingly the performance of data man-
agement systems is commonly measured against data with
the expected level of structuredness (e.g., the TPC-H bench-
mark for relational and the XMark benchmark for XML data).
The main strength of RDF is precisely that it can be used to
represent data across the full spectrum of structuredness,
from unstructured to structured. This flexibility of RDF, how-
ever, comes at a cost. By blurring the structuredness lines, the
management of RDF data becomes a challenge since no
assumptions can be made a-priori by an RDF DBMS as to
what type(s) of data it is going to manage. Unlike the rela-
tional and XML case, an RDF DBMS has the onerous
requirement that its performance should be tested against
very diverse data sets (in terms of structuredness).

A number of RDF data management systems (a.k.a. RDF
stores) are currently available. There are also research proto-
types supporting the storage of RDF over relational (column)
stores. To test the performance of these RDF stores, a number
of RDF benchmarks have also been developed. For the same
purposes of testing RDF stores, the use of certain real datasets
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has been popularized. While the focus of existing bench-
marks is mainly on the performance of the RDF stores in
terms of scalability (i.e., the number of triples in the tested
RDF data), a natural question to ask is which types of RDF
data these RDF stores are actually tested against. That is, we
want to investigate: (a) whether existing performance tests are
limited to certain areas of the structuredness spectrum; and
(b) what are these tested areas in the spectrum. To thatend and
in particular, we show that (i) the structuredness of each
benchmark dataset is practically fixed; and (ii) even if a store
is tested against the full set of available benchmark data, these
tests cover only a small portion of the structuredness spec-
trum. However, we show that many real RDF datasets lie in
currently untested parts of the spectrum.

SUMMARY

According to an aspect of the present principles, a method
is provided for generating resource description framework
benchmarks. The method includes deriving a resultant bench-
mark dataset with a user specified size and a user specified
coherence from and with respect to an input dataset of a given
size and a given coherence by determining which triples of
subject-property-object to add to the input dataset or remove
from the input dataset to derive the resultant benchmark
dataset.

According to another aspect of the present principles,
another method is provided for generating resource descrip-
tion framework benchmarks. The method includes deriving a
resultant benchmark dataset with a user specified size and a
user specified coherence from and with respect to an input
dataset of a given size and a given coherence. The deriving
step includes computing respective coins, each representing a
respective value by which the coherence of the input dataset
increases or decreases with respect to deriving the resultant
benchmark dataset, when respectively adding to or removing
from the input dataset all triples of subject-property-object
with subjects that are instances of types in a plurality of type
sets and with properties equal to a particular set of properties.
Each of the respective coins is computing with respect to all
of the types in only a respective one of the plurality of type
sets and with respect to only a respective one of the properties
in the particular set of properties. The deriving step further
includes determining an amount of the triples, as represented
by the respective coins, to be added or removed from the input
dataset to derive the resultant benchmark dataset. The deriv-
ing step also includes adding or removing the determined
amount of the triples from the input dataset so as to derive the
resultant benchmark dataset.

According to other aspect of the present principles, respec-
tive computer readable storage mediums are provided which
include respective computer readable programs that, when
executed on a computer causes the computer to perform the
respective steps of the aforementioned methods.

According to yet another aspect of the present principles, a
system is provided for deriving a resultant benchmark dataset
from and with respect to an input dataset of a given size and
a given coherence. The system includes a coin calculator for
computing respective coins, each representing a respective
value by which the coherence of the input dataset increases or
decreases with respect to deriving the resultant benchmark
dataset, when respectively adding or removing from the input
dataset all triples of subject-property-object with subjects that
are instances of types in a plurality of type sets and with
properties equal to a particular set of properties. Each of the
respective coins is computing with respect to all of the types
in only a respective one of the plurality of type sets and with
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respect to only a respective one of the properties in the par-
ticular set of properties. The system further includes a triple
amount determiner for determining an amount of the triples,
asrepresented by the respective coins, to be added or removed
from the input dataset to derive the resultant benchmark
dataset with a user specified size and a user specified coher-
ence. The system also includes a triple modifier for adding or
removing the determined amount of the triples from the input
dataset so as to derive the resultant benchmark dataset.

These and other features and advantages will become
apparent from the following detailed description of illustra-
tive embodiments thereof, which is to be read in connection
with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

The disclosure will provide details in the following
description of preferred embodiments with reference to the
following figures wherein:

FIG. 1 shows a block diagram illustrating an exemplary
computer processing system 100 to which the present prin-
ciples may be applied, according to an embodiment of the
present principles;

FIG. 2 shows an exemplary system 200 for generating
resource description framework benchmarks, according to an
embodiment of the present principles;

FIG. 3 shows a flow diagram illustrating an exemplary
method 300 for generating resource description framework
benchmarks, according to an embodiment of the present prin-
ciples;

FIG. 4 shows a flow diagram illustrating an exemplary
method 400 for collecting metrics for an input dataset,
according to an embodiment of the present principles;

FIG. 5 is a representation 500 of a dataset D to which the
present principles may be applied, according to an embodi-
ment of the present principles;

FIG. 6 is a representation 600 of a dataset D' to which the
present principles may be applied, according to an embodi-
ment of the present principles;

FIG. 7 is a plot 700 of the number of times a particular
property p has its value set, in all instances of type Tm in
dataset Dm, in accordance with an embodiment of the present
principles; and

FIG. 8 is a flow diagram showing another exemplary
method 800 for generating resource description framework
benchmarks, according to an embodiment of the present prin-
ciples.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

As noted above, the present principles are directed to cre-
ating benchmark graph data. In consideration of the afore-
mentioned deficiencies of the prior art and, hence, to expand
benchmarks to cover the structuredness spectrum, we intro-
duce a novel benchmark data generator with the following
unique characteristics: Our generator accepts as input any
dataset (e.g., a dataset generated from any of the existing
benchmarks, or any real data set) along with a desired level of
structuredness and size, and uses the input dataset as a seed to
produce a dataset with the indicated size and structuredness.
Our data generator has several advantages over existing ones.
The first obvious advantage is that our generator offers com-
plete control over both the structuredness and the size of the
generated data. Unlike existing benchmark generators whose
data domain and accompanying queries are fixed (e.g.,
LUBM considers a schema which includes Professors, Stu-
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dents and Courses, and the like, along with 14 fixed queries
over the generated data), our generator allows users to pick
their dataset and queries of choice and methodically create a
benchmark out of them. By fixing an input dataset and output
size, and by changing the value of structuredness, a user can
test the performance of a system across any desired level of
structuredness. At the same time, by considering alternative
dataset sizes, the user can perform scalability tests similar to
the ones performed by the current benchmarks. By offering
the ability to perform all the above using a variety of input
datasets (and therefore a variety of data and value distribu-
tions, as well as query workloads), our benchmark generator
can be used for extensive system testing of a system’s perfor-
mance along multiple independent dimensions.

Thus, we note at the onset that while many of the examples
provided herein regarding deriving a resultant benchmark
dataset from an input dataset relate to the resultant benchmark
dataset having at least one of a smaller size and/or a smaller
coherence with respect to the input dataset, the present prin-
ciples are not limited to the same. That is, the present prin-
ciples apply to increasing or decreasing one or both ofthe size
and coherence of the resultant benchmark dataset with
respectto the input dataset. Thus, particularly regarding some
of the examples and equations set forth herein directed to
decreasing size and/or coherence of the resultant benchmark
dataset, a simply inversion of the same readily provides the
corresponding solution for increasing size and/or coherence
of the resultant benchmark dataset, as is readily apparent to
one of skill in the art.

Aside from the practical contributions in the domain of
RDF benchmarking, there is a clear technical side to the
present principles. Inmore detail, the notion of structuredness
has been presented up to this point in a rather intuitive man-
ner. Herein, we offer a formal definition of structuredness and
we show how the structuredness of a particular set can be
measured. The generation of datasets with varying sizes and
levels of structuredness poses its own challenges. As we
show, one of the main challenges is due to the fact that there
is an interaction between data size and structuredness: alter-
ing the size of a dataset can affect its structuredness, and
correspondingly altering the structuredness of a dataset can
affectits size. So, given an input dataset and a desired size and
structuredness for an output dataset, we cannot just randomly
add/remove triples in the input dataset until we reach the
desired output size. Such an approach provides no guarantees
as to the structuredness of the output dataset and is almost
guaranteed to result in an output dataset with structuredness
which is different from the one desired. Similarly, we cannot
just adjust the structuredness of the input dataset until we
reach the desired level, since this process again is almost
guaranteed to result in a dataset with incorrect size. Herein,
we show that the solution to our benchmark generation prob-
lem comes in the form of two objective functions, one for
structuredness and one for size, and in a formulation of our
problem as an integer programming problem.

Thus, we introduce a formal definition of structuredness
and propose its use as one of the metrics for the characteriza-
tion of RDF data. Using our structuredness metrics, we show
that existing benchmarks cover only a small range of the
structuredness spectrum, which has little overlap with the
spectrum covered by real RDF data.

We develop a principled, general technique to generate an
RDF benchmark dataset that varies independently along the
dimensions of structuredness and size. We show that unlike
existing benchmarks, our benchmark generator can output
datasets that resemble real datasets not only in terms of struc-
turedness, but also in terms of content. This is feasible since
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our generator can use any dataset as input (real or synthetic)
and generate a benchmark out of'it.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
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methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

FIG. 1 shows a block diagram illustrating an exemplary
computer processing system 100 to which the present prin-
ciples may be applied, according to an embodiment of the
present principles. The computer processing system 100
includes at least one processor (CPU) 102 operatively
coupled to other components via a system bus 104. A read
only memory (ROM) 106, a random access memory (RAM)
108, adisplay adapter 110, an /O adapter 112, a user interface
adapter 114, and a network adapter 198, are operatively
coupled to the system bus 104.

A display device 116 is operatively coupled to system bus
104 by display adapter 110. A disk storage device (e.g., a
magnetic or optical disk storage device) 118 is operatively
coupled to system bus 104 by /O adapter 112.
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A mouse 120 and keyboard 122 are operatively coupled to
system bus 104 by user interface adapter 114. The mouse 120
and keyboard 122 are used to input and output information to
and from system 100.

A (digital and/or analog, wired and/or wireless) modem
196 is operatively coupled to system bus 104 by network
adapter 198.

Of course, the computer processing system 100 may also
include other elements (not shown), including, but not limited
to, a sound adapter and corresponding speaker(s), and so
forth, and readily contemplated by one of skill in the art.

FIG. 2 shows an exemplary system 200 for generating
resource description framework benchmarks, according to an
embodiment of the present principles.

The system 200 includes a coherence calculator 210, a coin
calculator 220, a triple amount determiner (e.g., which may
include but is not limited to an integer programming solver)
230, and a coin (triple) modifier (adder/remover) 240. While
the functions performed by the preceding elements are
described in detail throughout herein, we specifically point to
step 330 of method 300 of FIG. 3 described later herein with
respect to element 220 of system 200, step 340 of method 300
with respect to element 230 of system 200, and step 350 of
method 300 with respect to element 240 of system 200. Addi-
tionally, we specifically point to step 810 of method 800 of
FIG. 8 described later herein with respect to elements 210 and
220 of system 200, step 820 of method 800 with respect to
element 230 of system 200, and step 840 of method 800 with
respect to element 240 of system 200.

It is to be appreciated that system 200 may be implemented
by a computer processing system such as computer process-
ing system 100 shown and described with respect to FIG. 1.
Moreover, it is to be appreciated that select elements of com-
puter processing system 100 may be embodied in one or more
elements of system 200. For example, a processor and requi-
site memory may be included in one or more elements of
system 200, or may be distributed between one or more of
such elements. In any event such requisite processing and
memory hardware are used in any implementations of system
200, irrespective of which elements use and/or otherwise
include the same. Given the teachings of the present prin-
ciples provided herein, it is to be appreciated that these and
other variations and implementations of system 200 are
readily contemplated by one of skill in this and related arts,
while maintaining the spirit of the present principles.

FIG. 3 shows a flow diagram illustrating an exemplary
method 300 for generating resource description framework
benchmarks, according to an embodiment of the present prin-
ciples. In particular, the method derives a resultant bench-
mark dataset with a user specified smaller size and a user
specified smaller coherence from and with respect to an input
dataset of a given size and a given coherence.

Hence, at step 310, an input dataset of a given size and a
given coherence is provided (input). At step 320, a user speci-
fied size and a user specified coherence are input for the
resultant benchmark dataset with respect to the input file.

Atstep 330, respective coins are computed, each represent-
ing a respective value by which the coherence of the input
dataset increases or decreases with respect to deriving the
resultant benchmark dataset when respectively adding or
removing from the input dataset all triples of subject-prop-
erty-object with subjects that are instances of types in a plu-
rality of type sets and with properties equal to a particular set
of properties. In particular, each of the respective coins is
computed with respect to all of the types in only a respective
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one of the plurality of type sets and with respect to only a
respective one of the properties in the particular set of prop-
erties.

At step 340, an amount of the triples, as represented by the
respective coins, to be added or removed from the input
dataset to derive the resultant benchmark dataset is deter-
mined using an integer programming problem. Regarding
step 340, the use of the integer programming problem may
include and/or otherwise involve the formulation of one or
more constraints and/or one of more objective functions in
order to determine the amount of the triples to be removed.

At step 350, the determined amount of the triples are added
to or removed from the input dataset so as to derive the
resultant benchmark dataset. In the case that triples are added,
the new triples may include subject, property or object values
that are derived from existing subject, property or object
values in the input dataset, or they can include (new) invented
subject, property or object values that are not present in the
input dataset.

We note that each of the aforementioned steps of method
300 is described in further detail herein below.

We further note, regarding step 330, that in other embodi-
ments of the present principles, as readily contemplated by
one of ordinary skill in the art, each of the respective coins
need not be computed with respect to all of the types in only
a respective one of the plurality of type sets and with respect
to only a respective one of the properties in the particular set
of properties. That is, variations of the preceding may also be
used in accordance with the teachings of the present prin-
ciples, while maintaining the spirit of the present principles.
For example, coins can be computed for only a subset of the
types, or only a subset of the properties of a particular type. In
this manner, the user can specify that the types or properties
for which coins are not computed will remain intact and will
not be affected by any further changes in size or coherence.

Moreover, regarding step 340, we note that the present
principles are not limited to the use of an integer program-
ming problem and thus, given the teachings of the present
principles provided herein, one of ordinary skill in the art will
readily contemplate other approaches to performing the size
and coherence changes desired in the resultant benchmark
dataset, while maintaining the spirit of the present principles.
In such cases, the constraints and so forth described herein
with respect to the integer programming problem may be used
and/or one or more substituted or deleted when other
approaches are used. In the end, the goal is to modify the input
dataset to derive the resultant benchmark dataset having a
user specified size and/or a user specified coherence which
differs from that of the input dataset.

Datasets

As noted herein, the present principles are advantageously
applied to real or benchmark datasets. Examples of real
datasets include, for example, but are not limited to, the
DBpedia dataset, the UniProt dataset, the YAGO dataset, the
Barton library dataset, the Wordnet dataset, and the Linked
Sensor dataset. Examples of benchmark datasets include, for
example, but are not limited to, the TPC Benchmark H (TPC-
H) dataset, the Berlin SPARQL Benchmark (BSBM) dataset,
the Lehigh University Benchmark (LUBM) dataset, and the
SP®Bench benchmark data. The preceding and/or other
datasets may serve as an input dataset with respect to the
present principles.

FIG. 4 shows a flow diagram illustrating an exemplary
method 400 for collecting metrics for an input dataset,
according to an embodiment of the present principles. At step
410, all triples for an input dataset are assembled into a single
file, referred to as SDF.rdf (Single Dataset File). As step 420,
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data cleaning and normalization are performed. At step 430,
we generate three new files, namely SDF_subj.nt, SDF_
prop.nt, and SDF_obj.nt, by independently sorting file SDF.nt
along the subjects, properties and objects of the triples in
SDF.nt, respectively. At step 440, we select the SDF_subj.nt
file generated in the previous step, and use it to extract thetype
system of the current (i.e., input) dataset. At step 450, we use
file SDF_subj.nt, file SDF_prop.nt, and file SDF_obj.nt to
collect respective metrics.

Each of the steps in method 400 will now be described in
further detail.

Step 410. For some of the datasets (e.g., LUBM), the
dataset triples were distributed over a (large) number of files.
Therefore, the first step in our procedure is to assemble all the
triples into a single file. Hereafter, we use the dataset-inde-
pendent file name SDF.rdf (Single Dataset File) to refer to this
file.

Step 420. We also perform some data cleaning and normal-
ization. In more detail, some of the real datasets include a
small percentage of triples that are syntactically incorrect. In
this stage, we identify such triples, and we either correct the
syntax, if the fix is obvious (e.g., missing quote or angle
bracket symbols), or we drop the triple from consideration,
when the information in the triple is incomplete. We also drop
triples in a reified form (e.g., as in UniProt) and normalize all
the datasets by converting all of them in the N-Triples format,
which is a plain text RDF format, where each line in the text
corresponds to a triple, and each triple is represented by the
subject, property and object separated by space and the line
terminates with a full stop symbol. We refer to SDF.nt as the
file with the N-Triples representation of file SDF.rdf.

Step 430. We generate three new files, namely SDF_sub-
jt, SDF_prop.nt, and SDF_obj.nt, by independently sorting
file SDF.nt along the subjects, properties and objects of the
triples in SDF.nt. Each sorted output file is useful for different
types of collected metrics, and the advantage of sorting is that
the corresponding metrics can be collected by making a
single pass of the sorted file. Although the sorting simplifies
the computation cost of metrics, there is an initial consider-
able overhead since sorting files with billions of triples that
occupy many gigabytes (GBs) on disk require large amounts
of memory and processing power (for some datasets, each
individual sorting took more than two days in a dual processor
server with 24 GB of memory and 6 TB of disk space).
However, the advantage of this approach is that sorting need
only be done once. After sorting is done, metrics can be
collected efficiently and new metrics can be developed that
take advantage of the sort order. Another important advantage
of sorting the SDF.nt file is that duplicate triples are elimi-
nated during the sorting process. Such duplicate triples occur
especially when the input dataset is originally split into mul-
tiple files.

Step 440. We select the SDF_subj.nt file generated in the
previous step, and use it to extract the type system of the
current dataset. The reason for extracting the type system will
become clear hereinafter where we introduce the structured-
ness metrics.

Step 450. We use file SDF_subj.nt to collect metrics such as
counting the number of subjects and triples in the input
dataset, as well as detailed statistics about the outdegree of the
subjects (i.e., the number of properties associated with the
subject). We use file SDF_prop.nt to collect metrics such as
the number of properties in the dataset as well as detailed
statistics about the occurrences of each property. We use file
SDF_obj.nt to collect metrics such as the number of objects in
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the dataset as well as detailed statistics about the indegree of
the objects (i.e., the number of properties associated with the
object).

Coverage and Coherence

In what follows, we formally define the notion of struc-
turedness (through the coverage and coherence metrics) and
show the values of these metrics for the datasets introduced in
the previous section.

Intuitively, the level of structuredness of a dataset D with
respectto atype T is determined by how well the instance data
in D conform to type T. Consider for example the dataset D of
RDF triples in FIG. 5. That is, FIG. 5 is a representation 500
of'a dataset D to which the present principles may be applied,
according to an embodiment of the present principles. For
simplicity, assume that the type T of these triples has proper-
ties name, office and ext. If each entity (subject) in D sets
values for most (if not all) of the properties of T, then all the
entities in D have a fairly similar structure that conforms to T.
In this case, we can say that D has high structuredness with
respect to T. This is indeed the case for the dataset D in FIG.
5. Consider now a dataset Dm that consists of the union DUD'
of'triples in FIG. 5 and FIG. 6. FIG. 6 is a representation 600
of'a dataset D' to which the present principles may be applied,
according to an embodiment of the present principles. For
illustration purposes, consider a type Tm with properties
major and GPA, in addition to the properties of T. Dataset Dm
has low structuredness with respect to Tm. To see why this is
the case, notice that type Tm bundles together entities with
overlapping properties. So, while all entities in Dm have a
value for the name property, the first three entities (those
belonging to dataset D) set values only for the office and ext
properties, while the last three entities (those belonging to
dataset D') only set values for the major and GPA properties.
The objective of our work is to measure the level of struc-
turedness of a dataset (whatever it is), and to generate datasets
with a desired (high or low) structuredness level for the pur-
poses of benchmarking. In what follows, we formally define
structuredness and show how it can be measured.

Given atype T and a dataset D, let PT denote the set of all
properties (attributes) of T, I'T, D denote the set of all instances
(entities) of type T in dataset D, and OCp, IT, D the number of
occurrences of a property pePT, i.e., the number of times
property p has its value set, in the instances IT, D of T.
Referring back to FIG. 5, for the type and dataset defined
there, PT=name, office, ext is equal to person0, personl,
person2, while OCoffice, T is equal to 2 (since property office
is not set for the third entity in dataset D), and similarly
OCmajor, T is equal to 1.

DEFINITION 1. We define the coverage CVT, D of a type
T on a dataset D as

CVI,D=YpePTOCp ITDPTXILD o)

To understand the intuition behind coverage, consider FI1G.
7. FIG. 7 is a plot 700 of the number of times a particular
property p has its value set, in all instances of type Tm in
dataset Dm, in accordance with an embodiment of the present
principles. In particular, FIG. 7 considers the type Tm and
dataset Dm, as defined by FIGS. 5 and 6. Note that PTm=>5,
since there are five properties in the combined type system,
and Itm, Dm=>6 for the six person instances. For each property
p, the figure plots OCp, ITm, Dm. So, for example, for prop-
erty name OCname, ITm, Dm is equal to 6, while for property
major OCmajor, [Tm, Dm is equal to 1. Now, as mentioned
above, the structuredness of a type depends on whether the
instances of the type set a value for all its properties. So, for a
dataset Dm of Tm with perfect structuredness, every instance
of'the type in Dm sets all its properties, that is, OCp, [Tm, Dm
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is equal to I'Tm, Dm, for every property pePTm. Then, in FIG.
7 perfect structuredness translates to the area covered by
PTmxITm, Dm, i.e., the area corresponding to the rectangle
of the whole FIG. 7 (this is also the denominator in the
computation of CVTm, Dm). In general, however, not all
properties will be set for every instance. Then, the shaded area
in FIG. 7 (computed by the numerator in the computation of
CVTm, Dm) corresponds to the current level of structured-
ness of Dm with respect to Tm. Given the above, the formula
of'the coverage CVTm, Dm above is essentially an indication
of'the structuredness of Dm with respect to Tm normalized in
the [0, 1] interval (with values close to 0 corresponding to low
structuredness, and values close to 1 corresponding to perfect
structuredness). In our specific example, the value of the
computed coverage for CVIm, Dm is equal to 6+2+3+1+
330=0.5 which intuitively states that each instance of type Tm
in dataset Dm only sets half of its properties.

Formula 1 considers the structuredness of a dataset with
respect to a single type. Obviously, in practice a dataset D has
entities from multiple types, with each entity belonging to at
least one of these types (if multiple instantiation is sup-
ported). It is quite possible that dataset D might have a high
structuredness for a type T, say CVT, D=0.8, and a low struc-
turedness for another type T', say CVT', D=0.15. But then,
what is the structuredness of the whole dataset with respect to
our type system (set of all types) T? We propose a mechanism
to compute this, by considering the weighted sum of the
coverage CVT, D of individual types. In more detail, for each
type T, we weight its coverage using the following formula:

WICVLD=PI+ILDVTeTPT+IT.D 2)

where PT is the number of properties for a type T, IT, D is
the number of entities in D of type T, and the denominator
sums up these numbers for all the types in the type system T.
The weight formula has a number of desirable properties: It is
easy to see that if the coverage CVT, D is equal to 1, for every
type T in T, then the weighted sum of the coverage for all types
Tin T is equal to 1. The formula also gives higher weight to
types with more instances. So, the coverage of a type with, say
a single instance, has a lower influence in the computation of
structuredness of the whole dataset, than the coverage of a
type with hundreds of instances. This also matches our intu-
ition that types with a small number of instances are usually
more structured than types with larger number of instances.
Finally, the formula gives higher weight to types with a larger
number properties. Again, this matches our intuition that one
expects to find less variance in the instances of a type with, say
only two properties, than the variance that one encounters in
the instances of a type with hundreds of properties. The latter
type is expected to have a larger number of optional proper-
ties, and therefore if the type has high coverage, this should
carry more weight than a type with high coverage which only
has two properties.

We are now ready to compute the structuredness, herein-
after termed as coherence, of a whole dataset D with respect
to atype system T (to avoid confusion with the term coverage
which is used to describe the structuredness of a single type).

DEFINITION 2. We define the coherence CHT, D of a
dataset D with respect to a type system T as follows:

CHID=NTin TWICVLDxCVLD 3)

Computing Coherence

To compute the coherence of an input dataset, we consider
file SDF_subj.nt (see herein above). Remember that the file
contains all the triples in the dataset (after cleaning, normal-
ization and duplicate elimination) expressed in the N-Triples
format. We proceed by annotating each triple in SDF_subj.nt
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with the type of triple’s subject and object. This process
converts each triple to a quintuple. We call the resulted file
SDF_WT.nt (for Single Dataset File With Types). Once more
pass of the SDF_WT.nt file suffices to collect for each type T
of the dataset the value of OCp, IT, D, for each property p of
T. At the same time, we compute the values for PT and IT, D
and at the end of processing the file we are in a position to
compute CVT, D, WICVT, D and finally CHT, D.

Benchmark Generation

There are two overall methods to be considered in gener-
ating benchmarks with structuredness that better represent
real datasets. The first method, similar to the approach taken
by the developers of LUBM, SP?Bench and BSBM is to
generate a dataset with a given coherence and size bottom up.
The main issue with this approach is that the generated bench-
mark is domain specific. In all the aforementioned benchmark
datasets, the relationships and relative cardinalities between
different types come from knowledge of the target domain
and are hard-coded into the generation algorithms and are not
controllable by the user. For instance, the relative cardinali-
ties of professors and students or students and courses in
LUBM are a feature of the generation algorithm and are not
available to the user generating the benchmark.

The second method, which applies to any domain for
which there already is a benchmark, involves taking an
already generated benchmark dataset, and producing a
dataset with a specified smaller size and coherence. Ideally,
we would like to take a dataset D generated from an existing
benchmark and produce a dataset D' with a specified size
D'<D and a specified coherence CHT, D'<CHT, D. We believe
this latter method has a larger impact in practice, since it can
be used on top of any already existing benchmark or real-
world dataset.

The central idea behind our approach is that under certain
circumstances we can estimate the impact that removing a set
of triples with the same subject and property can have on
coherence. Let s, p, 0 be a triple from D and let Ts=Ts1, .. .,
Tsn be the set of types of instance s (we remind the reader that
a single instances s can have multiple types, for example a
GraduateStudent can also be a ResearchAssistant). We are
going to compute the impact on coherence of removing all
triples with subject s and property p from D, under the fol-
lowing two assumptions:

(Assumption 1) We are not completely removing property
p from any of the types Tsl, . . ., Tsn. That is, after the
removal, there will still exist instances for each of these types
that still have property p.

(Assumption 2) We are not completely removing instance
s from the dataset. This can be very easily enforced by keep-
ing the triples s, rdf:itype, Tsi in the dataset.

Under these two assumptions, note that the weights
WTCVT, D for the coverage of any type TeTs do not change
since we are keeping the same number of properties and
instances for each such type. For each type TeT s, we can
compute the new coverage as follows:

CVILD'=NqePT-pOCq,IT,D+OCp IT.D-1PTxIT.D (4)

Note that there is one less instance (specifically, s) that has
property p for type T. It is evident from this formula that
removing all triples with subject s and property p will
decrease the coverage of all types TeTs by CVT, D-CVT, D'.
Consequently, we can also compute the coherence CHT, D' of
D after removing these triples by simply replacing CVT, D
with CVT, D' for all types T in T s. Finally, we compute the
impact on the coherence of D of the removal as follows:

coinZs,p=CHL,D-CHIT,D’
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Letus illustrate this process with an example. Consider the
dataset Dm introduced in FIG. 5§ and assume we would like to
remove the triple (personl, ext, x5304) from Dm. Then the
new coverage for the type person in this dataset becomes
6+2+2+1+330~0.467, hence the impact on the coverage of
person is approximately 0.5-0.467=0.033. In this example,
Dm contains a single type, therefore the coherence of the
dataset is the same as the coverage for person, which brings us
to coin person, ext=0.033.

Benchmark Generation Algorithm

We now describe our approach to generate benchmark
datasets of desired coherence and size by taking a dataset D
and producing a dataset D' = D such that CHT, D=y and D'=0
where y and o are specified by the user. To do this, we need to
determine which triples need to removed from D to obtain D'.
We will formulate this as a integer programming problem and
solve it using an existing integer programming solver.

Previously herein, for a set of types SC T and a property p,
we have shown how to compute coinS, p, which represents
the impact on coherence of removing all triples with subjects
that are instances of the types in S and properties equal to p.
For simplification, we will overload notation and use coinS, p
to denote the number of subjects that are instances of all the
types in S and have at least one triple with property p, i.e., as
follows:

coinS,p=seTeSIT,DIs,p,veD

Our objective is to formulate an integer programming
problem whose solutions will tell us how many “coins”
(triples with subjects that are instances of certain types and
with a given property) to remove to achieve the desired coher-
ence y and size 0. We will use XS, p to denote the integer
programming variable representing the number of coins to
remove for each type of coin. In the worst case, the number of
such variables (and corresponding coin types) for D can be
2Tm, where T is the number of types in the dataset and wis the
number of properties in the dataset. However, in practice,
many type combinations will not have any instances, for
example in LUBM, we will not find instances of Undergradu-
ateStudent that are also instance of Course or Department.
For LUBM, we found that although there are 15 types and 18
properties, we only have 73 valid combinations (sets of types
and property with at least one coin available).

To achieve the desired coherence, we will formulate the
following constraint and maximization criteria for the integer
programming problem:

S € T pcoinS,pxXS,p<CHT, D-y (cn

MAXIMIZESS D, peoinS, pxXS,p M)

Inequality C1 states that the amount by which we decrease
coherence (by removing coins) should be less than or equal
than the amount we need to remove to get from CHT, D (the
coherence of the original dataset) to y (the desired coherence).
Objective function M states that the amount by which we
decrease coherence should be maximized. The two elements
together ensure that we decrease the coherence of D by as
much as possible, while not going below y.

We will also put lower and upper bounds on the number of
coins that can be removed. Remember that assumption (A1)
required us not to remove any properties from any types, so
we will ensure that at least one coin of each type remains.
Furthermore, we will enforce assumption (A2) about not
removing instances from the dataset by always keeping
triples with the rdf:type property as follows:

VSE Tp0=XS,p=coinS,p-1 c2)
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Achieving the desired size o is similar, but requires an
approximation. Under the simplifying assumption that all
properties are single-valued (i.e., there is only one triple with
a given subject and a given property in D), we could write the
following constraint:

S € TpXSp=D-c

This equation would ensure that we remove exactly the
right number of coins to obtain size o assuming that all
properties are single-valued (meaning one coin represents
exactly one triple). However, this assumption does not hold
for any of the datasets we have seen. In particular, for LUBM,
many properties are multi-valued. As an example, a student
can be enrolled in multiple courses, a paper has many authors,
and so forth. We will address this by computing an average
number of triples per coin type, which we denote by ctS, p,
and relaxing the size constraint as follows:

1-pxD-0sS & T,pXS,pxctS,p (C3)

S & TpXS,pxctS,p=l+pxD-0 c4)

In these two constraints, p is a relaxation parameter. The
presence of p is required because of the approximation we
introduced by using the average number of triples per coin. In
practice, setting p helped us tune the result of our algorithm
closer to the target coherence and size.

FIG. 8 shows a flow diagram illustrating another exem-
plary method 800 for generating resource description frame-
work benchmarks, according to an embodiment of the present
principles. Method 800 is essentially another representation
of method 300. In particular, method 800 also encompasses,
as contrasted to method 300, the situation where the integer
programming problem does not have a solution. At step 810,
the coherence and coin values and average triples per coin are
computed for all sets of types and all properties. At step 820,
the integer programming problem is formulated. The integer
programming problem may include and/or otherwise involve
one or more constraints and/or one or more objective func-
tions. At step 825, it is determined whether or not the integer
programming problem has a solution. If so, the method 800
proceeds to step 840. Otherwise, the method 800 proceeds to
step 830. At step 830, the dataset is made smaller responsive
to a lack of solution to the integer programming problem, for
example, by removing a percentage of instances, and the
method returns to step 810. Atstep 840, for each coin given by
a set of types and a particular property, triples with subjects
that are instances of the types in the set of types and have the
particular property are removed from the resultant bench-
mark dataset. At step 845, it is determined whether or not the
size of the resultant benchmark dataset is equal to a user
specified size. If so, then the method 800 proceeds to step 846.
Otherwise, the method 800 proceeds to step 850. At step 846,
the resultant benchmark dataset is output. At step 850, post-
processing is performed to remove triples with the same
subject and property, and the method 800 then proceeds to
step 846 to output the (post-processed) resultant benchmark
dataset.

We now further describe some of the steps of the method
800 that generates a benchmark dataset of desired coherence
vy and size o from an original dataset D:

(Step 810) Compute the coherence CHT, D and the coin
values coinS, p and average triples per coin ctS, p for all sets
of'types S € T and all properties p.

(Step 820) Formulate the integer programming problem by
writing constraints C1, C2, C3, C4 and objective function M.
Solve the integer programming problem.
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(Step 830) If the problem did not have a solution, then try
to make the dataset smaller by removing a percentage of
instances and continue from Step 1.

(Step 840) If the problem had a solution, then for each coin
given by S and p, remove triples with XS, p subjects that are
instances of types in S and have property p.

(Step 850) If the resulting dataset size is larger than o,
perform post-processing by attempting to remove from
triples with the same subject and property.

We have previously explained in detail how Steps (810)
and (820) can be executed. Step (830) is an adjustment in case
there is no solution to the linear programming problem.
Remember that assumption (A2) required us not to remove
entire instances from the dataset if the integer programming
formulation is to produce the correct number of coins to
remove. In practice, we found that for certain combinations of
vy and o, the integer programming problem does not have
solutions, such as particularly for cases where the desired
coherence v is high, but the desired size o is low (i.e., we have
to remove many coins, but we should not decrease coherence
much). For these cases, we found that we can remove entire
instances from D first to bring down its size, then reformulate
the integer programming problem and find a solution. The
intuition behind this approach is that when starting with origi-
nal datasets of very high coherence (e.g., LUBM, TPC-H,
etc.), removing instances uniformly at random will not
decrease coherence much (if at all), since the coverage for all
types is high, but it can decrease dataset size to a point where
our integer programming approach finds a solution.

To perform this removal of instances effectively, we
needed to understand how many instances to remove from the
original dataset to have a high probability of finding a solution
on the new dataset. In our experiments, the integer program-
ming problem always had a solution for oD~y CHT, D. There-
fore, we want to remove enough instances as to have the size
of'our new dataset approximately CHT, Dyxo. Assuming that
the dataset size is proportional to the number of instances (we
found this to be true for all datasets we examined), then we
should remove uniformly at random a proportion of 1-CHT,
DyxoD instances to arrive at a dataset for which we have a
good chance of solving the integer programming problem.
After this process, we must restart the algorithm since the
coherence and the numbers of coins for the dataset after the
instance removal may be different than those of the original
dataset.

In Step (840), we perform the actual removal of triples
according to the solutions to the integer programming prob-
lem. Step (850) is a post-processing step that attempts to
compensate for the approximation introduced by constraints
C3 and C4 of the integer programming problem. Specifically,
if the solution we obtain after Step (840) has a size higher than
0, then we can compensate by looking at triples with the same
subject and property.

Note that based on the way we have defined coverage for
types, the formula measures whether instances have at least
one value for each property of that type. Therefore, if a prop-
erty is multi-valued, we can safely remove the triples includ-
ing extra values (ensuring that we keep at least one value), and
therefore reduce the size of the dataset. While this step is
optional, it can improve the match between o and the actual
size of the resulting dataset. Note that the algorithm presented
in this section performs at least two passes through the origi-
nal dataset D. The first pass is performed in Step (810) to
compute coherence and coin values and the average number
of triples per coin. The second pass is performed in Step
(840), where coins are removed from D to generate the
desired dataset. If the integer programming problem does not
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have a solution, then at least four passes are required: one pass
in Step (810), one pass in Step (830) to remove instances, a
third pass in Step (810) to compute coherence and coin values
after instance removal and finally a fourth pass in Step (840)
to remove coins from the dataset. In addition, in either case
there may be an additional pass over the resulting dataset to
adjust for size (Step 850).

In addition, we note that in certain embodiments, certain
ones of the triples in the input dataset marked by a user are left
unchanged from the input dataset to the resultant benchmark
dataset so that the marked triples are identical in the input
dataset and the resultant bench dataset. This essentially guar-
antees to the user that after changes are made to the input data
set in order to derive the resultant benchmark dataset, that the
marked triples will still be there (i.e., still exist in the resultant
benchmark dataset).

Having described preferred embodiments of a system and
method (which are intended to be illustrative and not limit-
ing), it is noted that modifications and variations can be made
by persons skilled in the art in light of the above teachings. It
is therefore to be understood that changes may be made in the
particular embodiments disclosed which are within the scope
of the invention as outlined by the appended claims. Having
thus described aspects of the invention, with the details and
particularity required by the patent laws, what is claimed and
desired protected by Letters Patent is set forth in the appended
claims.

What is claimed is:

1. A method for generating resource description frame-
work benchmarks, comprising:

deriving a resultant benchmark dataset with a user speci-

fied size and a user specified coherence from and with
respect to an input dataset of a given size and a given
coherence;

wherein said deriving step comprises:

computing respective coins, each representing a respec-
tive value by which the coherence of the input dataset
increases or decreases with respect to deriving the
resultant benchmark dataset, when respectively add-
ing to or removing from the input dataset all triples of
subject-property-object with subjects that are
instances of types in a plurality of type sets and with
properties equal to a particular set of properties, each
of the respective coins being computing with respect
to all of the types in only a respective one of the
plurality of type sets and with respect to only a respec-
tive one of the properties in the particular set of prop-
erties;

determining an amount of the triples, as represented by
the respective coins, to be added or removed from the
input dataset to derive the resultant benchmark
dataset; and

adding or removing the determined amount of the triples
from the input dataset so as to derive the resultant
benchmark dataset.

2. The method of claim 1, wherein the user specified coher-
ence and the given coherence respectively denote an amount
of structure of the resultant benchmark dataset and the input
dataset with respect to the certain types.

3. The method of claim 2, wherein the amount of structure
of the resultant benchmark dataset is based on whether the
instances of all of the types in the set of types set a value for
all properties corresponding thereto.

4. The method of claim 1, wherein the determining is
performed with respect to two constraints when at least one of
the user specified size is smaller than the given size and the
user specified coherence is smaller than the given coherence,
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a first one of the two constraints being that instances of each
of'the types in the set of types with the same property will still
exist in the resultant benchmark dataset with respect to the
input dataset, the second one of the two constraints being that
at least one of the instances of the same subject is maintained
in the resultant benchmark dataset with respect to the input
dataset.

5. The method of claim 1, wherein the determining is
performed using an integer programming problem that speci-
fies an amount of the triples having the same subjects that are
instances of all of the types in the set of types and with the
same property to be added or removed from the input dataset
to derive the resultant benchmark dataset.

6. The method of claim 5, wherein the determining is
performed based on a constraint that an amount by which the
given coherence in the input dataset is decreased in order to
obtain the user specified coherence in the resultant bench-
mark dataset is less than or equal to an amount of the triples to
remove to get from the given coherence to the user specified
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coherence when the user specified coherence is less than the
given coherence or wherein the determining is performed
based on another constraint that the amount by which the
given coherence in the input dataset is increased in order to
obtain the user specified coherence in the resultant bench-
mark dataset is less than or equal to the amount of the triples
to add to get from the given coherence to the user specified
coherence when the user specified coherence is greater than
the given coherence.

7. The method of claim 5, wherein the determining is
performed based on a relaxation constraint imposed on the
user specified size, the relaxation constraint involving com-
puting an average number of triples per coin type in place of
a specific number of triples per the coin type, in determining
an amount of triples, as represented by the coins, to at least
one of add or remove from the input dataset to derive the
resultant benchmark dataset.
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